TGFBI promoter hypermethylation correlating with paclitaxel chemoresistance in ovarian cancer

نویسندگان

  • Ning Wang
  • Hui Zhang
  • Qin Yao
  • Yankui Wang
  • Shuzhen Dai
  • Xingsheng Yang
چکیده

The purpose of this study is to determine the methylation status of Transforming growth factor-beta-inducible gene-h3 (TGFBI) and its correlation with paclitaxel chemoresistance in ovarian cancer. The methylation status of TGFBI was examined in ovarian cancer and control groups by methylation-specific PCR (MSP) and bisulfite sequencing PCR (BSP). The TGFBI expression and cell viability were compared by Quantitative Real-Time PCR, Western Blotting and MTT assay before and after demethylating agent 5-aza-2'-deoxycytidine (5-aza-dc) treatment in 6 cell lines (SKOV3, SKOV3/TR, SKOV3/DDP, A2780, 2780/TR, OVCAR8). In our results, TGFBI methylation was detected in 29/40 (72.5%) of ovarian cancer and 1/10 (10%) of benign ovarian tumors. No methylation was detected in normal ovarian tissues (P < 0.001). No statistical correlation between RUNX3 methylation and clinicopathological characteristics was observed. A significant correlation between TGFBI methylation and loss of TGFBI mRNA expression was found (P < 0.001). The methylation level of TGFBI was significantly higher in paclitaxel resistant cell lines (SKOV3/TR and 2780/TR) than that in the sensitive pairs (P < 0.001). After 5-aza-dc treatment, the relative expression of TGFBI mRNA and protein increased significantly in SKOV3/TR and A2780/TR cells. However, no statistical differences of relative TGFBI mRNA expression and protein were found in other cells (all P > 0.05), which showed that re-expression of TGFBI could reverse paclitaxel chemoresistance. Our results show that TGFBI is frequently methylated and associated with paclitaxel-resistance in ovarian cancer. TGFBI might be a potential therapeutic target for the enhancement of responses to chemotherapy in ovarian cancer patients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transforming Growth Factor-Beta-Induced Protein (TGFBI)/(βig-H3): A Matrix Protein with Dual Functions in Ovarian Cancer

Transforming growth factor-beta-induced protein (TGFBI, also known as βig-H3 and keratoepithelin) is an extracellular matrix protein that plays a role in a wide range of physiological and pathological conditions including diabetes, corneal dystrophy and tumorigenesis. Many reports indicate that βig-H3 functions as a tumor suppressor. Loss of βig-H3 expression has been described in several cance...

متن کامل

The Extracellular Matrix Protein TGFBI Induces Microtubule Stabilization and Sensitizes Ovarian Cancers to Paclitaxel

The extracellular matrix (ECM) can induce chemotherapy resistance via AKT-mediated inhibition of apoptosis. Here, we show that loss of the ECM protein TGFBI (transforming growth factor beta induced) is sufficient to induce specific resistance to paclitaxel and mitotic spindle abnormalities in ovarian cancer cells. Paclitaxel-resistant cells treated with recombinant TGFBI protein show integrin-d...

متن کامل

SPARC Regulates Transforming Growth Factor Beta Induced (TGFBI) Extracellular Matrix Deposition and Paclitaxel Response in Ovarian Cancer Cells

TGFBI has been shown to sensitize ovarian cancer cells to the cytotoxic effects of paclitaxel via an integrin receptor-mediated mechanism that modulates microtubule stability. Herein, we determine that TGFBI localizes within organized fibrillar structures in mesothelial-derived ECM. We determined that suppression of SPARC expression by shRNA decreased the deposition of TGFBI in mesothelial-deri...

متن کامل

Inhibition of HDAC1 and DNMT1 Modulate RGS10 Expression and Decrease Ovarian Cancer Chemoresistance

RGS10 is an important regulator of cell survival and chemoresistance in ovarian cancer. We recently showed that RGS10 transcript expression is suppressed during acquired chemoresistance in ovarian cancer. The suppression of RGS10 is due to DNA hypermethylation and histone deacetylation, two important mechanisms that contribute to silencing of tumor suppressor genes during cancer progression. He...

متن کامل

Promoter hypermethylation of KLOTHO; an anti-senescence related gene in colorectal cancer patients of Kashmir valley

Hypermethylation of CpG islands located in the promoter regions of genes is a major event in the development of the majority of cancer types, due to the subsequent aberrant silencing of important tumor suppressor genes. KLOTHO; a novel gene associated primarily with suppressing senescence has been shown to contribute to tumorigenesis as a result of its impaired function. Recently the relevance ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2012